
Vim as an IDE
Writing Code Faster with Free Open-Source Software

Disclaimer for Windows Users

This presentation is primarily directed at working with *nix-flavored systems. The provided materials have not
been tested on Windows systems. If you have a Windows system and still want to use items from this

presentation, you can spin up a light-weight virtual machine with VirtualBox to emulate a *nix-flavored system
(such as Ubuntu or Fedora/RedHat).

Alternatively, you could go through the many great pains of debugging all of the plugins featured in this
presentation in a Windows environment by yourself (and waste many hours on StackOverflow in the process).

The choice is yours.

3

● Please install Homebrew if you do not already have it by
running the following command in your terminal:

○ "/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

● Please run brew install git if you do not already have
the git command line tool installed on your machine.

First Things First

https://raw.githubusercontent.com/Homebrew/install/master/install

Humble Beginnings

Grokking Vim’s predecessor, vi

The Basics

First steps on the path to mastery

6

● Code is read, code is written, and code is shared
○ “Normal” mode is for moving through the text
○ “Insert” mode is for writing to the text
○ “Visual” mode is for selecting portions of text

● Normal mode is and should be the default mode
● Enter insert mode with the i key (and some others)
● Enter visual mode with the v key (or V for whole lines/blocks)
● <Esc> key always returns to Normal mode

The Philosophy of vi

7

● Vi contains a succinct language for editing text
○ Text Objects and Motions -> nouns
○ Commands -> verbs
○ Numbers -> adjectives

● The Vi command language is designed around flow
○ Ideas should flow from brain to keyboard without strain
○ Do more with less keystrokes
○ Less keystrokes -> less time writing code
○ Less time writing -> more time thinking (and debugging)

Vi as a Language

8

● Delete (d)
● Change (c)
● Yank (y)
● Indent (>)
● Unindent (<)
● Swap case (~)

Commands

Vim Language: <Command><Number><Motion | Text Object>

● Chars Left (h)
● Lines Down (j)
● Lines Up (k)
● Chars Right (l)
● To end of line ($)
● To start of line (^)
● To <char> (t<char>)
● To start of word (b)
● To end of word (e)

Motions

● Word (w)
● Sentence (s)
● Paragraph (p)
● In single-quotes (i’)
● In double-quotes (i”)
● In back-quotes (i`)
● Around parens (a))
● Around brackets (a])
● Around curlies (a})

Text Objects

Place image over the box

This was the keyboard that vi
was originally developed for,
and the computer it was
originally developed on. Since
Vim is an improvement upon vi,
Vim uses hjkl as well.

You can use the arrow keys,
but most Vim users frown on it.

Why Vim uses HJKL for navigation

Buffers and Windows

Working with Multiple Files in Vim

What’s the Difference?

Buffer - The in-memory text of a loaded file
Window - Used for viewing the contents of a buffer

12

:ls - List all active buffers
:bN - Point the current window to the Nth buffer
:bdN - Delete the Nth buffer
:bdM,N - Delete all the buffers from M to N
:sp <file> - Split the current window horizontally, opening a
new buffer for the provided file
:vsp <file> - Same as :sp <file>, but vertical
:wincmd [h|j|k|l] - Move the cursor between split windows

Common Buffer and Split commands

13

● Paste a yanked snippet
● Undo the last operation
● Redo last undone operation
● Save a buffer to disk
● Quit and close a window
● Quit window without saving
● Quit out of all windows
● Run a shell command

Common Miscellaneous Operations Translation Table

● p
● u
● <Ctrl+R>
● :w
● :q
● :q!
● :qa
● :!<command>

“I want to…” “..., so in Vim normal mode I do…”

Sandbox Time

Use what you’ve learned so far!

15

●

Discussion - Initial thoughts

●
Awesome Gross

Leaving vi Behind

Making Vim Your Own with Customization and Plugins

17

● Pre-existing programs to add
new features to Vim (so you
don’t have to!)

● Can be in vimscript or other
languages (like Python)

● Use them to augment Vim
with additional functionality
to improve your flow

What are plugins (and why use them)?

18

There are a lot of plugin managers out there, but my favorite
(and the one I think is easiest to use) is called Pathogen. Setting
up Pathogen is easy, but setting up all the plugins is a tedious
process. So I scripted it. Please run git clone on this URL:
https://github.com/AlexisGoodfellow/vim_wit_workshop.git

Then run this:
cd vim_wit_workshop && ./install.sh &

Managing Your Plugins

https://github.com/AlexisGoodfellow/vim_wit_workshop.git

19

1. Ensuring /usr/local/bin is at front of $PATH
a. Looks for user-installed executables in /usr/local/bin first
b. Falls back to the operating system’s pre-loaded system

executables in /usr/bin if not found in /usr/local/bin
2. Downloading vim and ctags with homebrew
3. Setting up and downloading pathogen
4. Changing directory to ~/.vim/bundle
5. Downloading vim plugins by git clone-ing their repos

What the install script is doing

20

Whenever you open Vim, the ~/.vimrc file is scanned first and
all the settings in it are applied to your current session of Vim.

Thus, all customizations settings you want to apply can be put
here and executed on entering a Vim session.

The .vimrc file provided in the git repo is a sample of my
current working settings and options. Take anything you wish
from it and put it in your own ~/.vimrc!

The .vimrc file

21

● NERDTree: For easy directory traversal and visualization
● NERDCommenter: Comment out many lines at a time
● fzf: Fuzzy file finder (works blazingly fast!)
● vim-dadbod: A SQL database client from within Vim
● YouCompleteMe: A multi-language autocompletion engine
● syntastic: Does syntax checking on every write to a buffer
● vim-gutentags: Manages tag files in the background
● simpleterm.vim: Manage terminals from inside Vim easily
● vim-test: Customizable multi-language unit test runner
● vim-fugitive: Run git commands without leaving Vim

Some Plugins and their Purposes

22

● Entered via “:” in normal mode
● Both more powerful and more verbose than normal mode
● Can call Vimscript functions from the command-line mode
● Lots of plugins expose command-line mode only functions
● Use <Leader> key mappings

○ Avoid typing long function names
○ Improve flow

Vim’s Command Line Mode

23

<Leader> is a special key that Vim listens for in normal mode.
Once found, Vim takes the characters you type after it and tries
to match them to a keymapping in your ~/.vimrc.

<Leader> defaults to “/”, but is often overridden to “,” instead.

Example:
Mapping: nmap <Leader>v :GitGutterNextHunk<CR>
Usage: ,v

The <Leader> Key

24

● RTFM with :help
● I am still learning new

things every day
● You will best learn Vim by

using Vim for everything
● The learning curve is steep,

but the rewards are plentiful
● Vimscript itself is terrible

Final Thoughts

What questions do
you have?

(I know you have some - I’ve been using Vim for 5 years
and still learn new things on a near-daily basis)

Thank you very much!

(Now hack away on a project with what you’ve learned!)

